
Gemer: A Decentralized Parallel Application Programming Framework

1

Gemer: A Decentralized Parallel Application

Programming Framework

WORKING DRAFT

gemer.io

Daniel SH Hong

me@unifiedh.com

Abstract. In this paper, we propose Gemer, a parallel application programming framework for

decentralized applications. While not a blockchain or a DLT by itself, Gemer generates a "local

state" unique to each individual function that can be verified by comparing the root state hash of a

callstack graph of an application represented as a Patricia tree. Byzantine nodes can be detected

by performing a tree search/state hash comparison of the resulting callstack graph within the

verification stage. Nodes deemed as Byzantine may be penalized by revoking the device unique

key stored on an application-specific keychain. Trustlessness can be established by periodically

submitting verified state updates, including updates to the application keychain, to multiple

external blockchains specified as a “world state provider”. With Gemer, application developers

may be able to fully isolate purely functional codebases from limited state processing capabilities

of a blockchain, potentially achieving better scalability compared to using blockchain/DLT-based

scalability solutions. Commercial application developers may take advantage of this "Protocol as

an Application" concept by achieving trustlessness enabled by a blockchain, while still retaining

full control over their own application codebase, thus allowing commercial apps and services to

operate in a P2P fashion without the need of a trusted third party.

1. Introduction

Ethereum, as proposed by Vitalik Buterin (2014) [1], introduced a way to generalize transactions on a

distributed ledger as a state transition. This has enabled Turing-complete code to execute on blockchains and

distributed ledgers in the form of a Smart Contract, as in contrast with “first-generation” blockchain software

based on the design of Bitcoin (2008) [2].

Because Smart Contracts are code that execute on a distributed ledger, which are not controlled by a single,

centralized party, execution of a Smart Contract is (i) unstoppable, (ii) fault-tolerant and (iii) publicly verifiable

in a trustless fashion. Even though some of these features are required for creating a decentralized application,

of which code execution should not be controlled by a single party, not all of them are essential for commercial

applications exposed to end users.

While certain use cases, including but not limited to fundraising, automatic contracts and DAOs (Decentralized

Autonomous Organizations) do require the absolute trustlessness and public verifiability of a blockchain-based

Smart Contract, the scalability issues of a blockchain-based Smart Contract solution makes it unsuitable for

most commercial-level applications.

Researchers and developers within the blockchain ecosystem are attempting to solve this problem through

parallel expansion of current linear blockchain environments. Faster consensus, off-chain solutions such as state

https://gemer.io/
mailto:me@unifiedh.com

Gemer: A Decentralized Parallel Application Programming Framework

2

channels, state compression through new cryptographic technologies like ZK-SNARKs/STARKs [3], and new

ledger structures are also being proposed as solutions.

While these innovations in blockchain technology can promise higher transaction throughput, they inevitably

add logical complexity to the system. Thus, while a newly proposed system might have improved throughput

with parallel expansion, it gets difficult to obtain human-readable data for system admins and users to

independently verify, which can lead to centralization issues. Because the FLP Impossibility of Consensus

theorem (1985) [4] shows that a computerized consensus system cannot guarantee both safety and liveness, the

ability for humans to independently verify data and code execution on a decentralized network is crucial for

commercial-level systems.

Distributed ledgers are also difficult to work with for application developers due to its structural rigidity. Even

though the blockchain’s rigid data structure is key to ensuring its integrity, this often makes it difficult for

developers to build on it. For one thing, developers have limited ability to control data and code being recorded,

deployed or executed on a blockchain. Even though this may be useful in some cases, the additional efforts

required to build on a distributed ledger may result in a poor developer experience, even when abstracted and

automated.

What we need is a new solution not based on distributed ledgers that does not solely rely on a fixed “world

state” concept, and enabling stateless, yet verifiable computing. This new solution must be flexible enough

for developers to have confidence and control over their development and deployment environment, while

retaining trustlessness and integrity that can be achieved with DLT-based systems. It needs to be lightweight

enough to run on mainstream level devices, but also be able to utilize existing blockchain platforms to run tasks

that require public verifiability. A solution like this will enable developers to focus on writing decentralized

apps that prioritize user experience, while still taking advantage of distributed ledgers and Smart Contract

systems for public and trustless tasks.

Gemer: A Decentralized Parallel Application Programming Framework

3

2. A parallel interpretation of world state

Blockchain researchers and developers often use separate blockchains cryptographically tied to its parent in

order to improve transaction throughput. This often enables code to run its state transition on a child chain, and

only periodically submit cryptographic proof of multiple state transitions to the parent chain. Plasma [5],

Sharding [6], Mimblewimble [7][8] and Coda [9] are examples of such scalability approaches.

This scaling approach of processing state means that we can view world state on a root blockchain as a

collection of multiple “world states” independently co-existing on multiple, different blockchains. We define

this “sub-world state” on such a network as local state. Thus, we can define world state as a set of multiple,

independent local states.

𝜎𝑊𝑂𝑅𝐿𝐷 = {𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 , 𝜎𝐿𝑂𝐶𝐴𝐿

𝛽
, 𝜎𝐿𝑂𝐶𝐴𝐿

𝛿 , … }

Each local state is also a collection of state transitions occurring on each individual node, which actually mines

the transaction. We define state transitions executed on an individual node for a particular Smart Contract as a

local substate. Therefore, each local state can be defined as a set of multiple, independent local substates.

For instance, local state 𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 for a child blockchain 𝛼, which includes nodes Alice, Bob and Cindy, may be

defined as follows:

𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 = {𝜎𝐴𝐿𝐼𝐶𝐸

𝛼 , 𝜎𝐵𝑂𝐵
𝛼 , 𝜎𝐶𝐼𝑁𝐷𝑌

𝛼 , … }

Under a single blockchain, which must share the same state, it is assumed that state transitions for individual

nodes must be the same, even if it is not executed or validated locally. Thus the above definition is impossible

for a blockchain network under a single world or local state, which should practically be 𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 = 𝜎𝐴𝐿𝐼𝐶𝐸

𝛼 =

 𝜎𝐵𝑂𝐵
𝛼 = 𝜎𝐶𝐼𝑁𝐷𝑌

𝛼 = ⋯.

However, if Alice, Bob and Cindy are all executing different parts of a single application, the above

definition for local state 𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 = {𝜎𝐴𝐿𝐼𝐶𝐸

𝛼 , 𝜎𝐵𝑂𝐵
𝛼 , 𝜎𝐶𝐼𝑁𝐷𝑌

𝛼 , … } may be interpreted differently. In such a case,

the system for it should not be a blockchain or a distributed ledger, as it enforces a single state across all

participating nodes.

In order to verify multiple state transitions occurring on different nodes, we need a way to (i) compress all state

transitions on multiple nodes into a single value; (ii) share this single value across all nodes running the same

application; and (iii) quickly and effectively verify all state transitions on execution nodes only using this

verification value. Also, to achieve this concept as a whole, an application must be divided into different parts

that can (i) execute on its own, and (ii) generate state transitions as proof of code execution.

Gemer: A Decentralized Parallel Application Programming Framework

4

3. Functions and Applications

Combining the above two definitions of world, local and local-sub states, world state can be represented as:

𝜎𝑊𝑂𝑅𝐿𝐷 =

[

𝜎𝐴

𝛼 𝜎𝐵
𝛼 𝜎𝐶

𝛼 ⋯

𝜎𝐷
𝛽

𝜎𝐸
𝛽

𝜎𝐹
𝛽

⋯

𝜎𝐺
𝛾

𝜎𝐻
𝛾

𝜎𝐼
𝛾

⋯
⋮ ⋮ ⋮ ⋱]

with each row representing a separate local state.

With Gemer, a function is the basic building block for an application. Each application is defined as a

collection of call-and-return relationships between two or more functions. Thus, in its raw executable form,

Gemer applications are purely functional; this means that all operations are considered stateless, unless the

root function initially called by a user explicitly changes the application state.

We define each local substate as a cryptographic representation of a function’s parameter and return

values. This is required because functions stay stateless unless specified, and an execution result value is

required in order to verify a node’s honesty.

Thus, a local state can be defined as the combined state of a Gemer application. In Gemer, local state for an

application is represented as the root of a callstack graph represented as a Merkle-Patricia tree. While this

callstack graph is shared by all nodes running the same application, we only need to compute the values that can

be linked to a meaningful state transition.

Gemer: A Decentralized Parallel Application Programming Framework

5

4. The Codex & Keychain

To accommodate both the functions consisting an application and its corresponding local substates, we need a

new data structure that can be shared across nodes running the app. This application data structure used with

Gemer is called the codex.

The codex is a cyclic graph that represents the call-and-return relationships between different functions.

Each relationship is cryptographically tied as those of a blockchain. Individual “blocks” store the full bytecode

of each function, which are shared across all execution nodes.

The codex also includes a state chain, also cryptographically tied to each function code block in a directive

fashion. This stores the state transition data generated when each function executes. Only the callstack graph’s

tree root is stored in the state chain header, and the full tree for each state transition is only stored by (i) the

nodes that executed this particular state transition session, and (ii) the nodes that verified it.

The codex accommodates a separate data structure called the keychain. The keychain is a cryptographic chain

of device-specific public keys that are currently joining the network. A device without its public key registered

on the keychain is not considered to be a valid node on the network. Each state transition and verification stages

must be signed by the public key of the device that performed it. The keychain also holds the public key of the

entire application, which may be used for cross-application communication workloads.

A group of nodes that share the same codex is called the application container. All nodes within the container

must have its public device key registered on the container’s codex keychain. Unlike blockchains and

distributed ledgers, a Gemer container is semi-permissive; while anyone can join an application container, once

their public keys are revoked as a result of malicious behavior, they are no longer considered a part of that

container.

The bare codex, which only contains raw bytecode without the state chain and keychain, may be packaged

alongside with the release application binary distributed for end users. During network initialization, each end

device can (i) rely on the application developer’s release keys used to sign the application binary, and (ii)

compare its fingerprint against other devices within the same container to confirm its integrity.

Gemer: A Decentralized Parallel Application Programming Framework

6

Gemer: A Decentralized Parallel Application Programming Framework

7

5. Executing and Verifying the Codex

The steps to execute a codex within an application container are as follows:

(i) Randomly assign multiple execution nodes to each function. VRFs may be used for node assignment to

ensure public verifiability of allocation randomness, as proposed by Algorand [10];

(ii) Execute functions & write the resulting local substates to its corresponding state chain;

(iii) Pass all resulting local substates to its corresponding child processes as a stateless parameter;

(iv) Cryptographically sign all corresponding execution proofs tied to each local substate, using the unique

public key of the device (node) that executed the corresponding function;

(iv) Repeat (iii) and (iv) for a randomized portion of all executing devices deemed statistically significant to

ensure BFT;

(v) Expand the resulting state chain from (ii) ~ (iv) into an AST-style callstack graph. A callstack graph

generated from a state update must:

• be a temporary structure generated on a per-request or process basis;

• represent the execution flow cryptographically, involving all state chains involved in a single

execution session;

• have its leaf values be a compressed state representation of all its parent processes;

• be the form of a Merkle-Patricia tree, having its root as a representation of the whole.

(vi) If at least one of the resulting leaf values returned by (v) for all state chains from (iv) does not match, run a

recursive tree search. Halt at the last execution point that does not have a valid state hash.

• Look up the device public key used to sign the last faulty execution point on the keychain, and

penalize the corresponding execution node.

• Penalties may be recorded on the keychain, or used to revoke all keys related to that device under

certain circumstances.

• Repeat (i) ~ (vi) until the resulting callstack graph meets all the conditions of (vii).

(vii) Else, if all resulting leaf values returned by (v) for all state chains from (iv) match, commit all state

changes invoked by this session to the state chain.

• When a state change is committed to the state chain, devices and/or users involved in that particular

execution session may sign committed data with their public device key to approve finalization and

irreversibility.

• Access to permanent storage is achieved through an externalized state model, as explained with later

sections of this paper.

(viii) The cryptographic fingerprint of the resulting state chain and the keychain is periodically submitted to

an external blockchain. In the case of Turing-complete platform blockchains, Smart Contracts may be used

to automate this process on-chain.

Gemer: A Decentralized Parallel Application Programming Framework

8

(ix) State Flush & Container Exit: Under certain circumstances, such as a compromised codex or a state chain

overflow, an application may exit to another container, thus flushing most prior state chains stored within the

codex. In such a case, the application must meet the following exit conditions:

• When an application exits to a new container, the signature of the previous application container

recorded on the keychain and through an external state provider must be revoked, and be replaced

with the new container’s signature.

• A cryptographic representation of the previous codex container’s state chain must be recorded as

proof while existing to a new container codex. This value should be recorded as a genesis link of the

new container’s state chain.

• Statistically no more than 33% of all participating devices should be against the proposed

application container exit.

Gemer: A Decentralized Parallel Application Programming Framework

9

Gemer: A Decentralized Parallel Application Programming Framework

10

6. Web of Trust and Externalized State

The local state model we proposed with this paper proposed a new approach to the blockchain’s scalability

problem, while maintaining asynchronous BFT under particular conditions. However, in order for individual

local states to be fully fault tolerant, there are additional factors that should be considered for production-level

applications running under an asynchronous environment:

• The container forking problem. While fault tolerance may be achieved within an application

container with the codex model as described in the previous sections, the authenticity of a container in

itself cannot be established when communicating between different applications. In such a case, a

malicious attacker may be able to conduct a container forking attack, in which a remote attacker may

fork the entire codex and its corresponding state chain to inject malicious code into its clients.

• Accessing external permanent storage. When applications require access to data stored on an

external permanent storage service, such as IPFS or centralized cloud services, the trust of such data

cannot be established when trustlessness is assumed.

With Gemer, those problems may be largely addressed with two different approaches: web of trust and

externalized state. While some significant issues involving container forking and storage access may be

resolved with the web of trust paradigm, an externalized state model based on public, decentralized ledgers

may be necessary under certain circumstances.

I. The web of trust (WoT) model: The concept of WoT was first proposed by Phillip Zimmermann [11] with

the release of PGP. As described with the PGP User’s Manual, the idea for web of trust is:

“As time goes on, you will accumulate keys from other people that you may want to designate as trusted

introducers. Everyone else will each choose their own trusted introducers. And everyone will gradually

accumulate and distribute with their key a collection of certifying signatures from other people, with the

expectation that anyone receiving it will trust at least one or two of the signatures. This will cause the

emergence of a decentralized fault-tolerant web of confidence for all public keys.” [11]

Thus, the same idea may be applied for a Gemer container. As we already have a list of all device keys and a

container-wide signature within an application container included with its codex, this concept may be used to

enable trustlessness for external, trusted data.

Trustless permanent storage access may be achieved with the following process:

(i) Randomly selected devices first access data from a given source;

(ii) A cryptographic representation of the data blob is calculated, and written to the state chain;

(iii) Each device signs the data that it has accessed with its device key;

(iv) Compare the cryptographic representation of the signed data. If a signed data blob’s hash is different from

the one signed by the majority, the device holding the public key that signed it may be penalized.

Inter-application data exchanges may be established in a similar fashion. Because each application container

holds its own unique container key tied to its codex and keychain, a well-known container key may be

deemed as trustable under the web of trust paradigm.

The problem with this approach is that it may not be able to handle container exits effectively. When the state

chain is flushed and the application exits to another container, its public container key changes. This means that

the container forking problem will be an issue, as malicious attackers may try to imitate the new container due

to the fact that its public key is not yet well known.

Gemer: A Decentralized Parallel Application Programming Framework

11

II. The externalized state model: This approach relies on one or more external blockchains – or “world state

providers” – to submit the container public key and the container keychain hash periodically as a method to

verify a container’s integrity and identity. A cryptographic representation of the codex and state chains may also

be periodically submitted to a world state provider, when the integrity of application execution is of top priority.

While most blockchain and cryptocurrency networks may be utilized for this purpose, Turing-complete platform

chains such as Ethereum may be able to automate this process on-chain. This reduces the additional security

risks involved when processing such cryptographic proof submissions off-chain.

7. Tokenomics & Gas Fee

Gemer is not a blockchain, nor a distributed ledger network by itself; it is a software framework that defines

common interfaces that independent distributed applications can operate and talk with each other. This

is not a single network tied with common state data. Also, lightweight applications may not make sense as an

economic market large enough for a dedicated tokenomics model to make sense at all. In such a case, token-

based rewarding will only harm the overall user experience, as there are enough non-financial incentives that

can cancel out each other under supply and demand.

Thus, Gemer does not, and technically cannot, offer a native platform token by itself. However, for

resource-intensive applications, economic incentives may be required, as end-user devices often do not have

the compute and bandwidth capabilities to process massive computation workloads.

While Gemer does not have its native tokenomics model, individual developers may write additional code to

incorporate the concept for this purpose. Consider the contents of this section as a guideline rather than an

absolute rule to follow; under this proposed model, application developers are fully responsible for any

cryptocurrency and/or tokenomics model being included within their own applications.

A Gemer application may use any ERC-20 or equivalent standard token contract running on an external

blockchain as their own native token for gas fee and rewarding mechanisms. For the best user experience, we

recommend using well established cryptocurrencies such as Bitcoin [2] and Ethereum [1], or a trusted stablecoin

solution available as a token contract.

To reward computation nodes performing computationally heavy workloads, we may need to incorporate the

concept of gas in some cases. Gas is calculated on a per-function basis; in other words, only function blocks

invoked by a single execution session is taken into account when paying for computation gas.

Gas fees are paid for computation nodes “as-is”; this means that tokens should not be minted for the sole

purpose of computation rewards. However, when an application needs to accept multiple cryptocurrencies, or

fiat payments to maintain the payment user experience, the following solutions may be integrated:

• Decentralized Exchanges (DEX) as a service. A decentralized exchange, which can swap various

cryptocurrencies into one another, may be used to accept multiple cryptocurrencies within a single app

when consistency in currency is required for computation gas and/or other types of payment.

• Centralized payment gateways. Because Gemer applications can deal with centralized data and

services as described with the previous sections, centralized payment gateways may also be integrated

as a payment solution. Developers may directly accept payments through those providers when

computation gas is not involved, or use an exchange-as-a-service to change fiat currency paid through

centralized payment methods, such as credit cards, into cryptocurrencies in the background.

Gemer: A Decentralized Parallel Application Programming Framework

12

8. Conclusion

In this paper, we proposed Gemer, a parallel decentralized application programming framework for stateless

computing. Using this framework, commercial application developers can build fully decentralized applications

without being constrained by scalability limitations of a distributed ledger. Developers can also take advantage

of decentralized infrastructures, such as user data privacy and self-sovereignty, while being able to easily

incorporate, embrace and transform existing centralized infrastructure, user interface and codebases into

decentralized applications. We hope this work will help developers to choose decentralized infrastructures over

centralized ones as a foundation for their next big thing.

9. Future work

• Efficient way for detecting & penalizing Byzantine nodes: In the future, newer state compression

solutions such as zk-roll-up [12], Mimblewimble [7][8] and Coda [9] may greatly improve Byzantine

verification performance in a codex state chain.

• Translating existing codebases into the codex model: This requires a new virtual machine and

runtime compatibility layer that can compress state on a stack machine and pass it to another, without

largely rewriting existing code to be stateless and/or FP-complete. We are planning to discuss potential

solutions to this problem in the future.

• Better randomizable methods for selecting nodes: While pseudo-random functions may be sufficient

for random execution and edge node assignment, adopting VRFs [10] and other latest randomizable

methods should greatly decrease the risk of an execution node being predicted in the long term.

• Precise logic for tokenomics & payment: The current version of this paper does not directly integrate

a tokenomics model into Gemer, and leaves it up for the developers as a guideline. However, in case

we cannot control device behavior as intended solely through supply and demand, we may have to

integrate a tokenomics and gas payment model directly into the system.

• Protecting user data: In the current version of this paper, we did not discuss using zero-knowledge

proofs to protect user data while all parameters are recorded on the state chain for fault tolerance. This

will be added in a future version of this paper.

Gemer: A Decentralized Parallel Application Programming Framework

13

References

[1] Ethereum, “Ethereum”, https://www.ethereum.org.

[2] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”,

https://bitcoin.org/bitcoin.pdf, Oct 2008.

[3] Jens Grothm, “On the Size of Pairing-based Non-interactive Arguments”,

https://eprint.iacr.org/2016/260.pdf, 2016.

[4] Michael J. Fischer, Nancy A. Lynch & Michael S. Paterson, “Impossibility of Distributed

Consensus with One Faulty Process”,

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf, 1985.

[5] Joseph Poon & Vitalik Buterin, “Plasma: Scalable Autonomous Smart Contracts”,

https://plasma.io/plasma.pdf, 2017.

[6] Vitalik Buterin, “Ethereum Sharding FAQ”,

https://github.com/ethereum/wiki/wiki/Sharding-FAQ.

[7] Tom Elvis Jedusor, “Mimblewimble”,

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt, July 2016.

[8] Andrew Poelstra, “Mimblewimble”,

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf, Oct 2016.

[9] Izzak Meckler & Evan Shapiro, “Coda: Decentralized cryptocurrency at scale”,

https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf, May 2018.

[10] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos & Nickolai Zeldovich,

“Algorand: Scaling Byzantine Agreements for Cryptocurrencies”,

https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf.

[11] Phillip Zimmermann, “PGP User’s Guide, Volume I: Essential Topics”,

https://web.pa.msu.edu/reference/pgpdoc1.html, Oct 1994.

[12] Vitalik Buterin, “On-chain scaling to potentially ~500 tx/sec through mass tx

validation”, https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-

validation/3477, Sep 2018.

https://www.ethereum.org/
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2016/260.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://plasma.io/plasma.pdf
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
https://web.pa.msu.edu/reference/pgpdoc1.html
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477

	1. Introduction
	2. A parallel interpretation of world state
	3. Functions and Applications
	4. The Codex & Keychain
	5. Executing and Verifying the Codex
	6. Web of Trust and Externalized State
	7. Tokenomics & Gas Fee
	8. Conclusion
	9. Future work
	References

