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Abstract. In this paper, we propose Gemer, a parallel application programming framework for 

decentralized applications. While not a blockchain or a DLT by itself, Gemer generates a "local 

state" unique to each individual function that can be verified by comparing the root state hash of a 

callstack graph of an application represented as a Patricia tree. Byzantine nodes can be detected 

by performing a tree search/state hash comparison of the resulting callstack graph within the 

verification stage. Nodes deemed as Byzantine may be penalized by revoking the device unique 

key stored on an application-specific keychain. Trustlessness can be established by periodically 

submitting verified state updates, including updates to the application keychain, to multiple 

external blockchains specified as a “world state provider”. With Gemer, application developers 

may be able to fully isolate purely functional codebases from limited state processing capabilities 

of a blockchain, potentially achieving better scalability compared to using blockchain/DLT-based 

scalability solutions. Commercial application developers may take advantage of this "Protocol as 

an Application" concept by achieving trustlessness enabled by a blockchain, while still retaining 

full control over their own application codebase, thus allowing commercial apps and services to 

operate in a P2P fashion without the need of a trusted third party.  

 

1. Introduction 
 

 

Ethereum, as proposed by Vitalik Buterin (2014) [1], introduced a way to generalize transactions on a 

distributed ledger as a state transition. This has enabled Turing-complete code to execute on blockchains and 

distributed ledgers in the form of a Smart Contract, as in contrast with “first-generation” blockchain software 

based on the design of Bitcoin (2008) [2]. 

 

Because Smart Contracts are code that execute on a distributed ledger, which are not controlled by a single, 

centralized party, execution of a Smart Contract is (i) unstoppable, (ii) fault-tolerant and (iii) publicly verifiable 

in a trustless fashion. Even though some of these features are required for creating a decentralized application, 

of which code execution should not be controlled by a single party, not all of them are essential for commercial 

applications exposed to end users. 

 

While certain use cases, including but not limited to fundraising, automatic contracts and DAOs (Decentralized 

Autonomous Organizations) do require the absolute trustlessness and public verifiability of a blockchain-based 

Smart Contract, the scalability issues of a blockchain-based Smart Contract solution makes it unsuitable for 

most commercial-level applications. 

 

Researchers and developers within the blockchain ecosystem are attempting to solve this problem through 

parallel expansion of current linear blockchain environments. Faster consensus, off-chain solutions such as state 
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channels, state compression through new cryptographic technologies like ZK-SNARKs/STARKs [3], and new 

ledger structures are also being proposed as solutions. 

 

While these innovations in blockchain technology can promise higher transaction throughput, they inevitably 

add logical complexity to the system. Thus, while a newly proposed system might have improved throughput 

with parallel expansion, it gets difficult to obtain human-readable data for system admins and users to 

independently verify, which can lead to centralization issues. Because the FLP Impossibility of Consensus 

theorem (1985) [4] shows that a computerized consensus system cannot guarantee both safety and liveness, the 

ability for humans to independently verify data and code execution on a decentralized network is crucial for 

commercial-level systems. 

 

Distributed ledgers are also difficult to work with for application developers due to its structural rigidity. Even 

though the blockchain’s rigid data structure is key to ensuring its integrity, this often makes it difficult for 

developers to build on it. For one thing, developers have limited ability to control data and code being recorded, 

deployed or executed on a blockchain. Even though this may be useful in some cases, the additional efforts 

required to build on a distributed ledger may result in a poor developer experience, even when abstracted and 

automated. 

 

What we need is a new solution not based on distributed ledgers that does not solely rely on a fixed “world 

state” concept, and enabling stateless, yet verifiable computing. This new solution must be flexible enough 

for developers to have confidence and control over their development and deployment environment, while 

retaining trustlessness and integrity that can be achieved with DLT-based systems. It needs to be lightweight 

enough to run on mainstream level devices, but also be able to utilize existing blockchain platforms to run tasks 

that require public verifiability. A solution like this will enable developers to focus on writing decentralized 

apps that prioritize user experience, while still taking advantage of distributed ledgers and Smart Contract 

systems for public and trustless tasks.  
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2. A parallel interpretation of world state 
 
 
Blockchain researchers and developers often use separate blockchains cryptographically tied to its parent in 

order to improve transaction throughput. This often enables code to run its state transition on a child chain, and 

only periodically submit cryptographic proof of multiple state transitions to the parent chain. Plasma [5], 

Sharding [6], Mimblewimble [7][8] and Coda [9] are examples of such scalability approaches. 

 

This scaling approach of processing state means that we can view world state on a root blockchain as a 

collection of multiple “world states” independently co-existing on multiple, different blockchains. We define 

this “sub-world state” on such a network as local state. Thus, we can define world state as a set of multiple, 

independent local states. 

 

𝜎𝑊𝑂𝑅𝐿𝐷 = {𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 , 𝜎𝐿𝑂𝐶𝐴𝐿

𝛽
, 𝜎𝐿𝑂𝐶𝐴𝐿

𝛿 , … } 
 

 

Each local state is also a collection of state transitions occurring on each individual node, which actually mines 

the transaction. We define state transitions executed on an individual node for a particular Smart Contract as a 

local substate. Therefore, each local state can be defined as a set of multiple, independent local substates. 

For instance, local state 𝜎𝐿𝑂𝐶𝐴𝐿
𝛼  for a child blockchain 𝛼, which includes nodes Alice, Bob and Cindy, may be 

defined as follows: 

 

 

𝜎𝐿𝑂𝐶𝐴𝐿
𝛼  = {𝜎𝐴𝐿𝐼𝐶𝐸

𝛼 , 𝜎𝐵𝑂𝐵
𝛼 , 𝜎𝐶𝐼𝑁𝐷𝑌

𝛼 , … } 
 

 

Under a single blockchain, which must share the same state, it is assumed that state transitions for individual 

nodes must be the same, even if it is not executed or validated locally. Thus the above definition is impossible 

for a blockchain network under a single world or local state, which should practically be 𝜎𝐿𝑂𝐶𝐴𝐿
𝛼 = 𝜎𝐴𝐿𝐼𝐶𝐸

𝛼 =

 𝜎𝐵𝑂𝐵
𝛼 = 𝜎𝐶𝐼𝑁𝐷𝑌

𝛼 = ⋯.  

 
However, if Alice, Bob and Cindy are all executing different parts of a single application, the above 

definition for local state 𝜎𝐿𝑂𝐶𝐴𝐿
𝛼  = {𝜎𝐴𝐿𝐼𝐶𝐸

𝛼 , 𝜎𝐵𝑂𝐵
𝛼 , 𝜎𝐶𝐼𝑁𝐷𝑌

𝛼 , … } may be interpreted differently. In such a case, 

the system for it should not be a blockchain or a distributed ledger, as it enforces a single state across all 

participating nodes. 

 

In order to verify multiple state transitions occurring on different nodes, we need a way to (i) compress all state 

transitions on multiple nodes into a single value; (ii) share this single value across all nodes running the same 

application; and (iii) quickly and effectively verify all state transitions on execution nodes only using this 

verification value. Also, to achieve this concept as a whole, an application must be divided into different parts 

that can (i) execute on its own, and (ii) generate state transitions as proof of code execution.   
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3. Functions and Applications 
 
 
Combining the above two definitions of world, local and local-sub states, world state can be represented as: 

 

 

𝜎𝑊𝑂𝑅𝐿𝐷 = 

[
 
 
 
 
𝜎𝐴

𝛼 𝜎𝐵
𝛼 𝜎𝐶

𝛼 ⋯

𝜎𝐷
𝛽

𝜎𝐸
𝛽

𝜎𝐹
𝛽

⋯

𝜎𝐺
𝛾

𝜎𝐻
𝛾

𝜎𝐼
𝛾

⋯
⋮ ⋮ ⋮ ⋱ ]

 
 
 
 

 

 
with each row representing a separate local state. 

 

With Gemer, a function is the basic building block for an application. Each application is defined as a 

collection of call-and-return relationships between two or more functions. Thus, in its raw executable form, 

Gemer applications are purely functional; this means that all operations are considered stateless, unless the 

root function initially called by a user explicitly changes the application state.  

 

We define each local substate as a cryptographic representation of a function’s parameter and return 

values. This is required because functions stay stateless unless specified, and an execution result value is 

required in order to verify a node’s honesty. 

 

Thus, a local state can be defined as the combined state of a Gemer application. In Gemer, local state for an 

application is represented as the root of a callstack graph represented as a Merkle-Patricia tree. While this 

callstack graph is shared by all nodes running the same application, we only need to compute the values that can 

be linked to a meaningful state transition.   
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4. The Codex & Keychain 
 

 

To accommodate both the functions consisting an application and its corresponding local substates, we need a 

new data structure that can be shared across nodes running the app. This application data structure used with 

Gemer is called the codex. 

 

 

The codex is a cyclic graph that represents the call-and-return relationships between different functions. 

Each relationship is cryptographically tied as those of a blockchain. Individual “blocks” store the full bytecode 

of each function, which are shared across all execution nodes. 

 

 

The codex also includes a state chain, also cryptographically tied to each function code block in a directive 

fashion. This stores the state transition data generated when each function executes. Only the callstack graph’s 

tree root is stored in the state chain header, and the full tree for each state transition is only stored by (i) the 

nodes that executed this particular state transition session, and (ii) the nodes that verified it. 

 

 

The codex accommodates a separate data structure called the keychain. The keychain is a cryptographic chain 

of device-specific public keys that are currently joining the network. A device without its public key registered 

on the keychain is not considered to be a valid node on the network. Each state transition and verification stages 

must be signed by the public key of the device that performed it. The keychain also holds the public key of the 

entire application, which may be used for cross-application communication workloads. 

 

 

A group of nodes that share the same codex is called the application container. All nodes within the container 

must have its public device key registered on the container’s codex keychain. Unlike blockchains and 

distributed ledgers, a Gemer container is semi-permissive; while anyone can join an application container, once 

their public keys are revoked as a result of malicious behavior, they are no longer considered a part of that 

container. 

 

 

The bare codex, which only contains raw bytecode without the state chain and keychain, may be packaged 

alongside with the release application binary distributed for end users. During network initialization, each end 

device can (i) rely on the application developer’s release keys used to sign the application binary, and (ii) 

compare its fingerprint against other devices within the same container to confirm its integrity. 
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5. Executing and Verifying the Codex 
 
The steps to execute a codex within an application container are as follows: 

 

(i) Randomly assign multiple execution nodes to each function. VRFs may be used for node assignment to 

ensure public verifiability of allocation randomness, as proposed by Algorand [10]; 

 

(ii) Execute functions & write the resulting local substates to its corresponding state chain; 

 

(iii) Pass all resulting local substates to its corresponding child processes as a stateless parameter; 

 

(iv) Cryptographically sign all corresponding execution proofs tied to each local substate, using the unique 

public key of the device (node) that executed the corresponding function; 

 

(iv) Repeat (iii) and (iv) for a randomized portion of all executing devices deemed statistically significant to 

ensure BFT; 

 

(v) Expand the resulting state chain from (ii) ~ (iv) into an AST-style callstack graph. A callstack graph 

generated from a state update must: 

 

• be a temporary structure generated on a per-request or process basis; 

• represent the execution flow cryptographically, involving all state chains involved in a single 

execution session; 

• have its leaf values be a compressed state representation of all its parent processes; 

• be the form of a Merkle-Patricia tree, having its root as a representation of the whole. 

 

(vi) If at least one of the resulting leaf values returned by (v) for all state chains from (iv) does not match, run a 

recursive tree search. Halt at the last execution point that does not have a valid state hash. 

 

• Look up the device public key used to sign the last faulty execution point on the keychain, and 

penalize the corresponding execution node. 

• Penalties may be recorded on the keychain, or used to revoke all keys related to that device under 

certain circumstances. 

• Repeat (i) ~ (vi) until the resulting callstack graph meets all the conditions of (vii). 

 

(vii) Else, if all resulting leaf values returned by (v) for all state chains from (iv) match, commit all state 

changes invoked by this session to the state chain. 

 

• When a state change is committed to the state chain, devices and/or users involved in that particular 

execution session may sign committed data with their public device key to approve finalization and 

irreversibility. 

• Access to permanent storage is achieved through an externalized state model, as explained with later 

sections of this paper. 

 

(viii) The cryptographic fingerprint of the resulting state chain and the keychain is periodically submitted to 

an external blockchain. In the case of Turing-complete platform blockchains, Smart Contracts may be used 

to automate this process on-chain.  
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(ix) State Flush & Container Exit: Under certain circumstances, such as a compromised codex or a state chain 

overflow, an application may exit to another container, thus flushing most prior state chains stored within the 

codex. In such a case, the application must meet the following exit conditions: 

 

 

• When an application exits to a new container, the signature of the previous application container 

recorded on the keychain and through an external state provider must be revoked, and be replaced 

with the new container’s signature. 

 

 

• A cryptographic representation of the previous codex container’s state chain must be recorded as 

proof while existing to a new container codex. This value should be recorded as a genesis link of the 

new container’s state chain. 

 

 

• Statistically no more than 33% of all participating devices should be against the proposed 

application container exit. 
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6. Web of Trust and Externalized State 
 

The local state model we proposed with this paper proposed a new approach to the blockchain’s scalability 

problem, while maintaining asynchronous BFT under particular conditions. However, in order for individual 

local states to be fully fault tolerant, there are additional factors that should be considered for production-level 

applications running under an asynchronous environment: 

 

• The container forking problem. While fault tolerance may be achieved within an application 

container with the codex model as described in the previous sections, the authenticity of a container in 

itself cannot be established when communicating between different applications. In such a case, a 

malicious attacker may be able to conduct a container forking attack, in which a remote attacker may 

fork the entire codex and its corresponding state chain to inject malicious code into its clients. 

 

• Accessing external permanent storage. When applications require access to data stored on an 

external permanent storage service, such as IPFS or centralized cloud services, the trust of such data 

cannot be established when trustlessness is assumed. 

 

With Gemer, those problems may be largely addressed with two different approaches: web of trust and 

externalized state. While some significant issues involving container forking and storage access may be 

resolved with the web of trust paradigm, an externalized state model based on public, decentralized ledgers 

may be necessary under certain circumstances. 

 

I. The web of trust (WoT) model: The concept of WoT was first proposed by Phillip Zimmermann [11] with 

the release of PGP. As described with the PGP User’s Manual, the idea for web of trust is: 

 

“As time goes on, you will accumulate keys from other people that you may want to designate as trusted 

introducers. Everyone else will each choose their own trusted introducers. And everyone will gradually 

accumulate and distribute with their key a collection of certifying signatures from other people, with the 

expectation that anyone receiving it will trust at least one or two of the signatures. This will cause the 

emergence of a decentralized fault-tolerant web of confidence for all public keys.” [11] 

 

Thus, the same idea may be applied for a Gemer container. As we already have a list of all device keys and a 

container-wide signature within an application container included with its codex, this concept may be used to 

enable trustlessness for external, trusted data. 

 

Trustless permanent storage access may be achieved with the following process: 

 

(i) Randomly selected devices first access data from a given source; 

(ii) A cryptographic representation of the data blob is calculated, and written to the state chain; 

(iii) Each device signs the data that it has accessed with its device key; 

(iv) Compare the cryptographic representation of the signed data. If a signed data blob’s hash is different from 

the one signed by the majority, the device holding the public key that signed it may be penalized. 

 

Inter-application data exchanges may be established in a similar fashion. Because each application container 

holds its own unique container key tied to its codex and keychain, a well-known container key may be 

deemed as trustable under the web of trust paradigm. 

 

The problem with this approach is that it may not be able to handle container exits effectively. When the state 

chain is flushed and the application exits to another container, its public container key changes. This means that 

the container forking problem will be an issue, as malicious attackers may try to imitate the new container due 

to the fact that its public key is not yet well known. 

 



Gemer: A Decentralized Parallel Application Programming Framework 

 
11 

II. The externalized state model: This approach relies on one or more external blockchains – or “world state 

providers” – to submit the container public key and the container keychain hash periodically as a method to 

verify a container’s integrity and identity. A cryptographic representation of the codex and state chains may also 

be periodically submitted to a world state provider, when the integrity of application execution is of top priority. 

 

While most blockchain and cryptocurrency networks may be utilized for this purpose, Turing-complete platform 

chains such as Ethereum may be able to automate this process on-chain. This reduces the additional security 

risks involved when processing such cryptographic proof submissions off-chain. 

 

 

7. Tokenomics & Gas Fee 
 
 
Gemer is not a blockchain, nor a distributed ledger network by itself; it is a software framework that defines 

common interfaces that independent distributed applications can operate and talk with each other. This 

is not a single network tied with common state data. Also, lightweight applications may not make sense as an 

economic market large enough for a dedicated tokenomics model to make sense at all. In such a case, token-

based rewarding will only harm the overall user experience, as there are enough non-financial incentives that 

can cancel out each other under supply and demand. 

 

Thus, Gemer does not, and technically cannot, offer a native platform token by itself. However, for 

resource-intensive applications, economic incentives may be required, as end-user devices often do not have 

the compute and bandwidth capabilities to process massive computation workloads. 

 

While Gemer does not have its native tokenomics model, individual developers may write additional code to 

incorporate the concept for this purpose. Consider the contents of this section as a guideline rather than an 

absolute rule to follow; under this proposed model, application developers are fully responsible for any 

cryptocurrency and/or tokenomics model being included within their own applications. 

 

A Gemer application may use any ERC-20 or equivalent standard token contract running on an external 

blockchain as their own native token for gas fee and rewarding mechanisms. For the best user experience, we 

recommend using well established cryptocurrencies such as Bitcoin [2] and Ethereum [1], or a trusted stablecoin 

solution available as a token contract. 

 

To reward computation nodes performing computationally heavy workloads, we may need to incorporate the 

concept of gas in some cases. Gas is calculated on a per-function basis; in other words, only function blocks 

invoked by a single execution session is taken into account when paying for computation gas. 

 

Gas fees are paid for computation nodes “as-is”; this means that tokens should not be minted for the sole 

purpose of computation rewards. However, when an application needs to accept multiple cryptocurrencies, or 

fiat payments to maintain the payment user experience, the following solutions may be integrated: 

 

• Decentralized Exchanges (DEX) as a service. A decentralized exchange, which can swap various 

cryptocurrencies into one another, may be used to accept multiple cryptocurrencies within a single app 

when consistency in currency is required for computation gas and/or other types of payment. 

 

• Centralized payment gateways. Because Gemer applications can deal with centralized data and 

services as described with the previous sections, centralized payment gateways may also be integrated 

as a payment solution. Developers may directly accept payments through those providers when 

computation gas is not involved, or use an exchange-as-a-service to change fiat currency paid through 

centralized payment methods, such as credit cards, into cryptocurrencies in the background. 
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8. Conclusion 
 
 
In this paper, we proposed Gemer, a parallel decentralized application programming framework for stateless 

computing. Using this framework, commercial application developers can build fully decentralized applications 

without being constrained by scalability limitations of a distributed ledger. Developers can also take advantage 

of decentralized infrastructures, such as user data privacy and self-sovereignty, while being able to easily 

incorporate, embrace and transform existing centralized infrastructure, user interface and codebases into 

decentralized applications. We hope this work will help developers to choose decentralized infrastructures over 

centralized ones as a foundation for their next big thing.  

 

9. Future work 
 
 

• Efficient way for detecting & penalizing Byzantine nodes: In the future, newer state compression 

solutions such as zk-roll-up [12], Mimblewimble [7][8] and Coda [9] may greatly improve Byzantine 

verification performance in a codex state chain. 

 

• Translating existing codebases into the codex model: This requires a new virtual machine and 

runtime compatibility layer that can compress state on a stack machine and pass it to another, without 

largely rewriting existing code to be stateless and/or FP-complete. We are planning to discuss potential 

solutions to this problem in the future. 

 

• Better randomizable methods for selecting nodes: While pseudo-random functions may be sufficient 

for random execution and edge node assignment, adopting VRFs [10] and other latest randomizable 

methods should greatly decrease the risk of an execution node being predicted in the long term. 

 

• Precise logic for tokenomics & payment: The current version of this paper does not directly integrate 

a tokenomics model into Gemer, and leaves it up for the developers as a guideline. However, in case 

we cannot control device behavior as intended solely through supply and demand, we may have to 

integrate a tokenomics and gas payment model directly into the system. 

 

• Protecting user data: In the current version of this paper, we did not discuss using zero-knowledge 

proofs to protect user data while all parameters are recorded on the state chain for fault tolerance. This 

will be added in a future version of this paper. 
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